Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: covidwho-2326136

ABSTRACT

Many viruses require proteolytic activation of their envelope proteins for infectivity, and relevant host proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of influenza A virus (IAV) and various coronaviruses (CoV). Increased TMPRSS2 expression has been associated with a higher risk of severe influenza infection and enhanced susceptibility to SARS-CoV-2. Here, we found that Legionella pneumophila stimulates the increased expression of TMPRSS2-mRNA in Calu-3 human airway cells. We identified flagellin as the dominant structural component inducing TMPRSS2 expression. The flagellin-induced increase was not observed at this magnitude for other virus-activating host proteases. TMPRSS2-mRNA expression was also significantly increased by LPS, Pam3Cys, and Streptococcus pneumoniae, although less pronounced. Multicycle replication of H1N1pdm and H3N2 IAV but not SARS-CoV-2 and SARS-CoV was enhanced by flagellin treatment. Our data suggest that bacteria, particularly flagellated bacteria, up-regulate the expression of TMPRSS2 in human airway cells and, thereby, may support enhanced activation and replication of IAV upon co-infections. In addition, our data indicate a physiological role of TMPRSS2 in antimicrobial host response.


Subject(s)
Serine Endopeptidases , Humans , Flagellin/pharmacology , Influenza A virus/physiology , Influenza A Virus, H3N2 Subtype/physiology , Lipopolysaccharides/pharmacology , RNA, Messenger , SARS-CoV-2 , Serine Endopeptidases/genetics
2.
Virulence ; 12(1): 1111-1121, 2021 12.
Article in English | MEDLINE | ID: covidwho-1243446

ABSTRACT

Coronaviruses and influenza viruses are circulating in humans and animals all over the world. Co-infection with these two viruses may aggravate clinical signs. However, the molecular mechanisms of co-infections by these two viruses are incompletely understood. In this study, we applied air-liquid interface (ALI) cultures of well-differentiated porcine tracheal epithelial cells (PTECs) to analyze the co-infection by a swine influenza virus (SIV, H3N2 subtype) and porcine respiratory coronavirus (PRCoV) at different time intervals. Our results revealed that in short-term intervals, prior infection by influenza virus caused complete inhibition of coronavirus infection, while in long-term intervals, some coronavirus replication was detectable. The influenza virus infection resulted in (i) an upregulation of porcine aminopeptidase N, the cellular receptor for PRCoV and (ii) in the induction of an innate immune response which was responsible for the inhibition of PRCoV replication. By contrast, prior infection by coronavirus only caused a slight inhibition of influenza virus replication. Taken together, the timing and the order of virus infection are important determinants in co-infections. This study is the first to show the impact of SIV and PRCoV co- and super-infection on the cellular level. Our results have implications also for human viruses, including potential co-infections by SARS-CoV-2 and seasonal influenza viruses.


Subject(s)
Epithelial Cells/virology , Influenza A Virus, H3N2 Subtype/physiology , Porcine Respiratory Coronavirus/physiology , Viral Interference , Animals , CD13 Antigens/metabolism , Cells, Cultured , Coinfection/virology , Coronavirus Infections/virology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Immunity, Innate , Orthomyxoviridae Infections/virology , Swine , Trachea/cytology , Virus Replication
3.
Blood Adv ; 4(13): 2967-2978, 2020 07 14.
Article in English | MEDLINE | ID: covidwho-625455

ABSTRACT

Thrombocytopenia is a common complication of influenza virus infection, and its severity predicts the clinical outcome of critically ill patients. The underlying cause(s) remain incompletely understood. In this study, in patients with an influenza A/H1N1 virus infection, viral load and platelet count correlated inversely during the acute infection phase. We confirmed this finding in a ferret model of influenza virus infection. In these animals, platelet count decreased with the degree of virus pathogenicity varying from 0% in animals infected with the influenza A/H3N2 virus, to 22% in those with the pandemic influenza A/H1N1 virus, up to 62% in animals with a highly pathogenic A/H5N1 virus infection. This thrombocytopenia is associated with virus-containing platelets that circulate in the blood. Uptake of influenza virus particles by platelets requires binding to sialoglycans and results in the removal of sialic acids by the virus neuraminidase, a trigger for hepatic clearance of platelets. We propose the clearance of influenza virus by platelets as a paradigm. These insights clarify the pathophysiology of influenza virus infection and show how severe respiratory infections, including COVID-19, may propagate thrombocytopenia and/or thromboembolic complications.


Subject(s)
Blood Platelets/virology , Influenza A virus/pathogenicity , Influenza, Human/complications , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Thrombocytopenia/etiology , Animals , Blood Platelets/metabolism , Blood Platelets/pathology , Disease Models, Animal , Ferrets , Host-Pathogen Interactions , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/physiology , Influenza A virus/physiology , Influenza, Human/metabolism , Influenza, Human/pathology , Influenza, Human/virology , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Thrombocytopenia/metabolism , Thrombocytopenia/pathology , Thrombocytopenia/virology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL